login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072676
Numbers k for which the prime circle problem has a solution composed of disjoint subsets: the arrangement of numbers 1 through 2k around a circle is such that the sum of each pair of adjacent numbers is prime, the odd numbers are in order and the even numbers are in groups of decreasing sequences.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 64, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84
OFFSET
1,2
COMMENTS
This is a generalization of A072618. The integer k is in this sequence if either (a) 4k-1 and 2k+1 are prime, or (b) 2k+2i-1, 2k+2i+1 and 2i+1 are prime for some 0 < i < k. The Mathematica program computes a prime circle for such k. It is very easy to show that there are prime circles for large k, such as 10^10.
LINKS
Eric Weisstein's World of Mathematics, Prime Circle.
EXAMPLE
k=10 is a term because one solution is {1, 2, 3, 8, 5, 6, 7, 4, 9, 20, 11, 18, 13, 16, 15, 14, 17, 12, 19, 10} and the even numbers are in three decreasing sequences {2}, {8, 6, 4} and {20, 18, 16, 14, 12, 10}. Note that this solution contains {1, 2} and {1, 2, 3, 8, 5, 6, 7, 4}, which are solutions for k=1 and k=4.
MATHEMATICA
n=10; lst={}; i=0; found=False; While[i<n&&!found, i++; If[i==n, found=PrimeQ[4n-1]&&PrimeQ[2n+1], found=PrimeQ[2n+2i-1]&&PrimeQ[2n+2i+1]&&PrimeQ[2i+1]]]; If[found, lst=Flatten[Table[{2j-1, 2n-2(j-i)}, {j, i, n}]], Print["no solution using this method"]]; If[found, While[n=i-1; n>0, i=0; found=False; While[i<n&&!found, i++; found=PrimeQ[2n+2i-1]&&PrimeQ[2n+2i+1]]; If[found, lst=Flatten[Append[Table[{2j-1, 2n-2(j-i)}, {j, i, n}], lst]]]]]; lst
CROSSREFS
KEYWORD
nice,nonn
AUTHOR
T. D. Noe, Jul 01 2002
STATUS
approved