Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 15 2024 11:46:17
%S 0,4,14,40,110,304,854,2440,7070,20704,61094,181240,539630,1610704,
%T 4815734,14414440,43177790,129402304,387944774,1163310040,3488881550,
%U 10464547504,31389448214,94159956040,282463090910,847355718304
%N a(n) = 3^n+2*2^n-3.
%D G. S. Carr, Formulas and Theorems in Pure Mathematics, New York, Chelsea, 1970. see pp. 83-84.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6).
%F G.f.: x * (4 - 10*x) / ((1 - x) * (1 - 2*x) * (1 - 3*x)).
%F a(0)=0, a(1)=4, a(2)=14, a(n)=6*a(n-1)-11*a(n-2)+6*a(n-3). - _Harvey P. Dale_, Sep 06 2012
%e 4*x + 14*x^2 + 40*x^3 + 110*x^4 + 304*x^5 + 854*x^6 + 2440*x^7 + 7070*x^8 + ...
%t Table[3^n+2*2^n-3,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{0,4,14},30] (* _Harvey P. Dale_, Sep 06 2012 *)
%o (PARI) {a(n) = 3^n + 2 * 2^n - 3}
%K nonn,easy
%O 0,2
%A _Michael Somos_, Jul 01 2002