login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072674
a(n) = 3^n+2*2^n-3.
0
0, 4, 14, 40, 110, 304, 854, 2440, 7070, 20704, 61094, 181240, 539630, 1610704, 4815734, 14414440, 43177790, 129402304, 387944774, 1163310040, 3488881550, 10464547504, 31389448214, 94159956040, 282463090910, 847355718304
OFFSET
0,2
REFERENCES
G. S. Carr, Formulas and Theorems in Pure Mathematics, New York, Chelsea, 1970. see pp. 83-84.
FORMULA
G.f.: x * (4 - 10*x) / ((1 - x) * (1 - 2*x) * (1 - 3*x)).
a(0)=0, a(1)=4, a(2)=14, a(n)=6*a(n-1)-11*a(n-2)+6*a(n-3). - Harvey P. Dale, Sep 06 2012
EXAMPLE
4*x + 14*x^2 + 40*x^3 + 110*x^4 + 304*x^5 + 854*x^6 + 2440*x^7 + 7070*x^8 + ...
MATHEMATICA
Table[3^n+2*2^n-3, {n, 0, 30}] (* or *) LinearRecurrence[{6, -11, 6}, {0, 4, 14}, 30] (* Harvey P. Dale, Sep 06 2012 *)
PROG
(PARI) {a(n) = 3^n + 2 * 2^n - 3}
CROSSREFS
Sequence in context: A001872 A054443 A281766 * A202900 A238117 A032285
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jul 01 2002
STATUS
approved