login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of two powers of 13.
6

%I #14 Feb 14 2021 12:50:14

%S 2,14,26,170,182,338,2198,2210,2366,4394,28562,28574,28730,30758,

%T 57122,371294,371306,371462,373490,399854,742586,4826810,4826822,

%U 4826978,4829006,4855370,5198102,9653618,62748518,62748530,62748686,62750714,62777078,63119810

%N Sum of two powers of 13.

%H T. D. Noe, <a href="/A072390/b072390.txt">Rows n = 0..100 of triangle, flattened</a>

%F 13^n + 13^m, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n.

%t Union[Total/@Tuples[13^Range[0,9], 2]] (* _Harvey P. Dale_, Sep 15 2011 *)

%t Flatten[Table[Table[13^n + 13^m, {m, 0, n}], {n, 0, 10}]] (* _T. D. Noe_, Jun 18 2013 *)

%o (Python)

%o def aupto(lim):

%o pows, p = [], 1

%o while p < lim: pows.append(p); p *= 13

%o return sorted([a+b for a in pows for b in pows if b >= a and a+b <= lim])

%o print(aupto(63119810)) # _Michael S. Branicky_, Feb 14 2021

%K easy,nonn,tabl

%O 0,1

%A _Jeremy Gardiner_, Jul 20 2002