login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072287
Let f(n, m) = binomial(n - m/2 + 1, n - m + 1) - binomial(n - m/2, n - m + 1) and let s(n) = Sum_{k=0..n} f(n, k); then a(n) = numerator of s(n).
2
1, 2, 7, 47, 155, 2027, 6597, 42835, 138875, 3599155, 11654465, 75457289, 244238477, 3161900479, 10232916665, 66231885067, 214336798299, 11097918730051, 35913975952793, 232441522435405, 752199270651129
OFFSET
0,2
LINKS
FORMULA
s(0)=1, s(1)=2, s(n+1)=s(n)+s(n-1)+binomial(n-1/2, n) for n>=1.
(2*n+3)*s(n) - s(n+1) + (-4*n-7)*s(n+2) + (2*n+4)*s(n+3) = 0. - Robert Israel, Feb 06 2019
EXAMPLE
1,2,7/2,47/8,155/16,2027/128,6597/256,42835/1024,138875/2048,...
MAPLE
S:= gfun:-rectoproc({s(0)=1, s(1)=2, s(2)=7/2, (2*n+3)*s(n) - s(n+1) + (-4*n-7)*s(n+2) + (2*n+4)*s(n+3) = 0, s(n), remember):
map(numer@S, [$0..30]); # Robert Israel, Feb 06 2019
MATHEMATICA
f[n_, m_] := Binomial[n - m/2 + 1, n - m + 1] - Binomial[n - m/2, n - m + 1]; s[n_] := Sum[ f[n, k], {k, 0, n}]; Table [Numerator[s[n]], {n, 0, 26}]
CROSSREFS
Denominator of s(n+1) = A046161(n).
Sequence in context: A116892 A201481 A054555 * A290488 A276649 A091117
KEYWORD
nonn,easy,frac
AUTHOR
Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002
STATUS
approved