login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Commuting permutations: number of ordered triples of permutations f, g, h in Symm(n) which all commute.
5

%I #20 May 09 2023 11:41:06

%S 1,1,8,48,504,4680,66240,856800,14515200,242040960,4775500800,

%T 95520902400,2175146265600,50438868480000,1292330988748800,

%U 34092378448128000,971277752180736000,28566680100102144000,896191466580393984000,29029508406664077312000

%N Commuting permutations: number of ordered triples of permutations f, g, h in Symm(n) which all commute.

%D a(1)-a(7) computed by John McKay, Sep 06 2003.

%H T. D. Noe, <a href="/A072169/b072169.txt">Table of n, a(n) for n = 0..200</a>

%F Equals A061256(n)*n!.

%t nn = 20; b = Table[DivisorSigma[1, n], {n, nn}]; Range[0, nn]! CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* _T. D. Noe_, Jun 19 2012 *)

%o (Magma) for n in {1 .. 5} do G := SymmetricGroup(n); t1 := 0; for g in G do for h in G do for i in G do if g*h eq h*g and g*i eq i*g and h*i eq i*h then t1 := t1+1; end if; end for; end for; end for; n, t1; end for;

%Y Column k=3 of A362827.

%Y Cf. A061256, A053529.

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Sep 06 2003. More terms from A061256 from _N. J. A. Sloane_, Jun 13 2012