login
A072112
Decimal expansion of Hall and Tenenbaum constant.
3
3, 2, 8, 6, 7, 4, 1, 6, 2, 9, 0, 8, 5, 4, 6, 2, 1, 6, 8, 1, 8, 2, 8, 4, 5, 1, 4, 0, 4, 3, 1, 1, 5, 1, 1, 8, 9, 7, 6, 9, 4, 1, 5, 4, 7, 6, 5, 5, 7, 8, 1, 9, 0, 9, 6, 1, 5, 5, 1, 3, 3, 2, 3, 9, 0, 9, 5, 7, 0, 5, 1, 5, 9, 6, 9, 6, 5, 7, 1, 2, 5, 5, 0, 2, 2, 1, 8, 2, 2, 6, 1, 8, 9, 1, 5, 6, 8, 8, 9, 3, 1, 9, 1, 8
OFFSET
0,1
COMMENTS
For any multiplicative function g with values -1<= g(k) <= 1, for any real x >=2, Sum( i<= x, g(i) ) << x * exp{ -K * Sum( p<=x, (1-g(p))/p ) } and K is the optimal constant satisfying this inequality (Hall and Tenenbaum, 1991).
Named after the British mathematician Richard Roxby Hall and the French mathematician Gérald Tenenbaum (b. 1952). - Amiram Eldar, Jun 22 2021
REFERENCES
G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 348, Publications de l'Institut Cartan, 1990.
LINKS
R. R. Hall and G. Tenenbaum, Effective mean value estimates for complex multiplicative functions, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 110, No. 2 (1991), pp. 337-351.
FORMULA
K = cos(S) = 0.3286... where S is the root 0 < S < 2*Pi of sin(S)+(Pi-S)*cos(S) = Pi/2.
EXAMPLE
0.32867416290854621681828451404311511897694154765578...
MATHEMATICA
digits = 104; x /. FindRoot[Pi*x + Sqrt[1 - x^2] - x*ArcCos[x] == Pi/2, {x, 0}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013 *)
PROG
(PARI) \p 200;
cos(solve(X=0, 2*Pi, sin(X)+(Pi-X)*cos(X)-Pi/2))
CROSSREFS
Cf. A072113.
Sequence in context: A072657 A098163 A260323 * A071658 A089860 A130960
KEYWORD
cons,easy,nonn
AUTHOR
Benoit Cloitre, Jun 19 2002
STATUS
approved