login
A071844
Numbers k such that reverse(gpf(k)) = gpf(k+1), where gpf(n) = A006530(n); a(1)=1.
0
1, 73, 155, 425, 650, 1053, 1243, 1364, 1632, 1859, 1988, 2133, 2774, 4046, 4991, 5328, 5475, 5529, 6292, 8029, 8176, 10730, 12495, 13431, 17459, 17576, 17879, 18980, 20329, 20855, 20944, 22815, 24024, 25122, 26936, 28518, 29319, 29784
OFFSET
1,2
EXAMPLE
29319 is a term because 29319 = 3*29*337 and 29320 = 2*2*2*5*733.
MATHEMATICA
p =(FactorInteger@#)[[-1, 1]] & /@ Range@(10^6); Prepend[Flatten@Position[Transpose[{Most@p, IntegerReverse@Rest@p}], {a_, a_}], 1] (* Hans Rudolf Widmer, Jun 02 2024 *)
PROG
(PARI) gpf(k) = vecmax(factor(k)[, 1]); \\ A006530
isok(k) = (k==1) || fromdigits(Vecrev(digits(gpf(k)))) == gpf(k+1); \\ Michel Marcus, Jun 02 2024
CROSSREFS
Sequence in context: A044324 A044705 A248399 * A078856 A142326 A142377
KEYWORD
base,nonn
AUTHOR
Jason Earls, Jun 08 2002
STATUS
approved