login
A071746
a(n) = p(7n+5)/7 where p(k) denotes the k-th partition number.
12
1, 11, 70, 348, 1449, 5334, 17822, 55165, 160215, 441105, 1159752, 2929465, 7142275, 16873472, 38749850, 86737678, 189672868, 405991500, 852077072, 1756048833, 3558408287, 7098041203, 13951818365, 27047831797, 51760979985
OFFSET
0,2
COMMENTS
One of the congruences related to the partition numbers stated by Ramanujan.
REFERENCES
Berndt and Rankin, "Ramanujan: letters and commentaries", AMS-LMS, History of mathematics, vol. 9, pp. 192-193.
G. H. Hardy, Ramanujan, Cambridge Univ. Press, 1940. - From N. J. A. Sloane, Jun 07 2012
LINKS
J. L. Drost, A Shorter Proof of the Ramanujan Congruence Modulo 5, Amer. Math. Monthly 104(10) (1997), 963-964.
Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From N. J. A. Sloane, Jun 07 2012
FORMULA
a(n) = (1/7)*A000041(7n+5).
a(n) = A000041(A017041(n))/7 = A213261(n)/7. - Omar E. Pol, Jan 18 2013
MATHEMATICA
Table[PartitionsP[7n+5]/7, {n, 0, 24}] (* Jean-François Alcover, Nov 30 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, n=7*n+5; polcoeff(1/eta(x+x*O(x^n)), n)/7)
(PARI) {a(n)=local(A, B); if(n<0, 0, A=x*O(x^n); B=eta(x^7+A); A=eta(x+A); polcoeff( B^3/A^4 +x*7*B^7/A^8, n))} /* Michael Somos, Jan 01 2006 */
(PARI) a(n) = numbpart(7*n+5)/7; \\ Michel Marcus, Nov 30 2015
(Magma) a:= func< n | NumberOfPartitions((7*n+5)) div 7 >; [ a(n) : n in [0..30]]; // Vincenzo Librandi, Nov 30 2015
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 24 2002
STATUS
approved