login
A070866
Smallest prime such that the difference of successive terms is nondecreasing.
5
2, 3, 5, 7, 11, 17, 23, 29, 37, 47, 59, 71, 83, 97, 113, 131, 149, 167, 191, 223, 257, 293, 331, 373, 419, 467, 521, 577, 641, 709, 787, 877, 967, 1061, 1163, 1277, 1399, 1523, 1657, 1801, 1949, 2099, 2251, 2411, 2579, 2749, 2927, 3109, 3299, 3491, 3691, 3907
OFFSET
1,1
FORMULA
a(1)=2, a(2)=3, a(n) = A007918(2*a(n-1) - a(n-2)). - Reinhard Zumkeller, Jul 08 2004
MATHEMATICA
d = 2; p = 2; t = {2, 3}; Do[p = NextPrime[p + d - 1]; d = p - t[[-1]]; AppendTo[t, p], {98}]; t (* T. D. Noe, Nov 21 2011 *)
PROG
(PARI) s=1; t=1; for(n=1, 100, s=s+t; while(isprime(s+t)==0, t++); print1(s+t, ", "))
(Julia)
using Primes
function A070866(bound)
a, b = 2, 3
P = [a, b]
while true
p = nextprime(b + (b - a))
p > bound && break
push!(P, p)
a, b = b, p
end
P end
A070866(100000) |> println # Peter Luschny, Dec 23 2019
CROSSREFS
Cf. A070865.
Sequence in context: A057751 A040046 A075551 * A237285 A175953 A362017
KEYWORD
nonn
AUTHOR
Amarnath Murthy, May 16 2002
EXTENSIONS
More terms from Benoit Cloitre, May 20 2002
STATUS
approved