OFFSET
1,1
COMMENTS
From Jianing Song, Feb 14 2021: (Start)
a(n) is the smallest prime p such that there is a primitive 2n-th root of unity modulo p, i.e., there is an element with order 2n in the multiplicative group of integers modulo p.
For n > 1, a(n) is the smallest prime p such that the 2n-th cyclotomic field Q(exp(2*Pi*i/(2*n))) can be embedded into the p-adic field Q_p. (End)
LINKS
Dmitry Kamenetsky, Table of n, a(n) for n = 1..50000
FORMULA
a(n) = 2*n*A016014(n) + 1. - Dmitry Kamenetsky, Oct 26 2016
MATHEMATICA
With[{prs=Prime[Range[200]]}, Flatten[Table[Select[prs, Mod[#, 2n]==1&, 1], {n, 60}]]] (* Harvey P. Dale, Jan 16 2013 *)
PROG
(PARI) for(n=1, 80, s=1; while((isprime(s)*s-1)%(2*n)>0, s++); print1(s, ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, May 15 2002
EXTENSIONS
More terms from Benoit Cloitre, May 18 2002
STATUS
approved