login
A070830
Number of wide partitions of n.
2
1, 1, 2, 3, 3, 5, 6, 9, 11, 14, 18, 23, 29, 35, 45, 56, 68, 85, 103, 125, 150, 183, 217, 266, 315, 380, 449, 534, 628, 745, 874, 1034, 1212, 1423, 1665, 1944, 2265, 2627, 3055, 3536, 4099, 4735, 5479, 6309, 7273, 8358, 9599, 11012, 12605, 14421
OFFSET
1,3
COMMENTS
The "Wide Partition Conjecture" (see e.g. Chow et al., 2002/2003) is still unsolved. - N. J. A. Sloane, Nov 21 2013
LINKS
T. Y. Chow, C. K. Fan, M. X. Goemans and J. Vondrak, Wide partitions, Latin tableaux and Rota's basis conjecture, arXiv preprint arXiv:math/0205288 [math.CO], 2002.
T. Chow, C. Fan, M. Goemans, and J. Vondrak, Wide Partitions, Latin Tableaux and Rota's Basis Conjecture, Advances in Applied Mathematics, Vol. 31 (2003), No. 2, pp. 334-358.
CROSSREFS
Cf. A108339.
Sequence in context: A039876 A239312 A317167 * A039862 A018051 A036803
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 10 2002
STATUS
approved