login
A070592
Largest prime factor of the n-th Fermat number F(n) = 2^(2^n) + 1.
6
3, 5, 17, 257, 65537, 6700417, 67280421310721, 5704689200685129054721, 93461639715357977769163558199606896584051237541638188580280321
OFFSET
0,1
LINKS
C. L. Stewart, On Divisors of Fermat, Fibonacci, Lucas, and Lehmer Numbers, Proceedings of the London Mathematical Society, Vol. s3-35, No. 3 (1977), pp. 425-447. See p. 430.
Eric Weisstein's World of Mathematics, Fermat Number.
FORMULA
From Amiram Eldar, Oct 25 2024: (Start)
a(n) = A006530(A000215(n)).
a(n) > c * n * 2^n for n >= 1, where c is a positive absolute constant (Stewart, 1977). (End)
PROG
(PARI) a(n) = vecmax(factor(2^(2^n) + 1)[, 1]); \\ Michel Marcus, Jul 05 2017
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Benoit Cloitre, May 12 2002
EXTENSIONS
Offset changed by Arkadiusz Wesolowski, Jul 09 2011
STATUS
approved