login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070136
Numbers m such that [A070080(m), A070081(m), A070082(m)] is a right integer triangle.
6
17, 116, 212, 370, 493, 850, 1297, 1599, 1629, 2574, 2778, 3751, 4298, 4370, 5251, 5286, 6476, 9169, 10066, 12398, 12441, 12520, 14414, 16365, 16602, 19831, 21231, 21486, 24060, 26125, 27245, 29230, 33625, 33658
OFFSET
1,1
COMMENTS
Right integer triangles have integer areas: see A070142.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 1..137
Eric Weisstein's World of Mathematics, Heronian Triangle.
Eric Weisstein's World of Mathematics, Right Triangle.
Reinhard Zumkeller, Integer-sided triangles
EXAMPLE
116 is a term: [A070080(116), A070081(116), A070082(116)]=[6,8,10], A070085(116)=6^2+8^2-10^2=36+64-100=0.
212 is a term: [A070080(212), A070081(212), A070082(212)]=[5,12,13], A070085(212)=5^2+12^2-13^2=25+144-169=0.
MATHEMATICA
m = 500 (* max perimeter *);
sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
Position[triangles, {a_, b_, c_} /; a^2 + b^2 == c^2] // Flatten (* Jean-François Alcover, Oct 12 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 05 2002
STATUS
approved