login
A070109
Number of right integer triangles with perimeter n and relatively prime side lengths.
13
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,1716
COMMENTS
Right integer triangles have integer areas: see A070142, A051516.
a(n) is nonzero iff n is in A024364.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (obtained from the b-file of A078926)
Eric Weisstein's World of Mathematics, Right Triangle.
Eric Weisstein's World of Mathematics, Pythagorean Triples.
Reinhard Zumkeller, Integer-sided triangles
FORMULA
a(n) = A078926(n/2) if n is even; a(n)=0 if n is odd.
a(n) = A051493(n) - A070094(n) - A070102(n).
a(n) <= A024155(n).
EXAMPLE
For n=30 there are A005044(30) = 19 integer triangles; only one is right: 5+12+13 = 30, 5^2+12^2 = 13^2; therefore a(30) = 1.
MATHEMATICA
unitaryDivisors[n_] := Cases[Divisors[n], d_ /; GCD[d, n/d] == 1];
A078926[n_] := Count[unitaryDivisors[n], d_ /; OddQ[d] && Sqrt[n] < d < Sqrt[2n]];
a[n_] := If[EvenQ[n], A078926[n/2], 0];
Table[a[n], {n, 1, 1716}] (* Jean-François Alcover, Oct 04 2021 *)
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 05 2002
EXTENSIONS
Secondary offset added by Antti Karttunen, Oct 07 2017
STATUS
approved