login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069466
Triangle T(n, k) of numbers of square lattice walks that start and end at origin after 2*n steps and contain exactly k steps to the east, possibly touching origin at intermediate stages.
6
1, 2, 2, 6, 24, 6, 20, 180, 180, 20, 70, 1120, 2520, 1120, 70, 252, 6300, 25200, 25200, 6300, 252, 924, 33264, 207900, 369600, 207900, 33264, 924, 3432, 168168, 1513512, 4204200, 4204200, 1513512, 168168, 3432, 12870, 823680, 10090080, 40360320, 63063000, 40360320, 10090080, 823680, 12870
OFFSET
0,2
COMMENTS
A Pólya plane walk takes steps (N,E,S,W) along cardinal directions in the plane, visiting only points of Z^2 (cf. Links). T(n,k) is the number of walks departing from and returning to the origin, with exactly 2*k steps along the NS axis and 2*(n-k) steps along the EW direction. Equivalently, triangle T(n,k) is the number of distinct permutations of a 2*n-letter word with letters (N,E,S,W) in multiplicity (k,n-k,k,n-k). Moving only along either NS or EW directions, T(n,0) = T(n,n) = A000894(n). Row sums appear as Equation 4 in the original Pólya article, Sum_{k=0..n} T(n,k) = A002894(n). This identity is proven routinely using Zeilberger's algorithm. - Bradley Klee, Aug 12 2018
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..1325 (Rows n=0..50, flattened)
A. Bostan, Calcul Formel pour la Combinatoire des Marches, Habilitation à Diriger des Recherches, Université Paris 13, 2017, page 11.
FORMULA
Recurrences: T(1, 0) = T(1, 1)=2; T(k, r) = 2*k*(2*k-1)/(k-r)^2 * T(k-1, r); T(k, r) = (k+1-r)^2/r^2 * T(k, r-1).
T(n, k) = binomial(2*n, n) * binomial(n, k)^2.
Sum_{k=0..n} T(n, k) = A002894(n).
From Bradley Klee, Aug 12 2018: (Start)
T(n,k) = (2*n)!/((n-k)!*k!)^2.
T(n,k) = C(2*n,2*k)*C(2*(n-k),n-k)*C(2*k,k).
Sum_{k=0..n} T(n,k) = Sum_{k=0..n} C(2*n,2*k)*C(2*(n-k),n-k)*C(2*k,k) = C(2*n,n)^2.
Sum_{k=0..n} T(n,k) = Sum_{k=0..n} (2n)!/(k!(n-k)!)^2 = C(2*n,n)^2.
(End)
EXAMPLE
Triangle begins:
1,
2, 2,
6, 24, 6,
20, 180, 180, 20,
70, 1120, 2520, 1120, 70,
252, 6300, 25200, 25200, 6300, 252
...
T(4,2) = 2520 because there are 2520 distinct lattice walks of length 2*4=8 starting and ending at the origin and containing exactly 2 steps to the east.
For T(2,k), the lattice-path words are:
T(2,0):{EEWW, WEEW, WWEE, EWWE, WEWE, EWEW}
T(2,1):{NESW, NEWS, NSEW, NSWE, NWES, NWSE, ENSW, ENWS, ESNW, ESWN, EWNS, EWSN, SNEW, SNWE, SENW, SEWN, SWNE, SWEN, WNES, WNSE, WENS, WESN, WSNE, WSEN}
T(2,2):{NNSS, SNNS, SSNN, NSSN, SNSN, NSNS}
MAPLE
T:=(n, k)->binomial(2*n, n)*(binomial(n, k))^2: seq(seq(T(n, k), k=0..n), n=0..8); # Muniru A Asiru, Oct 21 2018
MATHEMATICA
T[k_, r_] := Binomial[2k, k]*Binomial[k, r]^2; Table[T[k, r], {k, 0, 8}, {r, 0, k}] // Flatten (* Jean-François Alcover, Nov 21 2012, from explicit formula *)
PROG
(GAP) T:=Flat(List([0..8], n->List([0..n], k->Binomial(2*n, n)*(Binomial(n, k))^2))); # Muniru A Asiru, Oct 21 2018
CROSSREFS
T(2*n, n) = A008977(n).
Cf. A007318 (Pascal, m=1), this sequence (m=2), A320824 (m=3).
Sequence in context: A138801 A188958 A141902 * A143084 A188962 A076741
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Martin Wohlgemuth, Mar 24 2002
STATUS
approved