login
A068898
Triangular numbers containing 2k digits in which the sum of the first k digits = that of the rest.
3
55, 66, 2415, 3003, 5050, 5151, 5995, 8778, 9045, 113050, 138075, 171405, 174345, 177906, 183921, 198765, 203203, 216153, 219453, 234270, 237705, 239086, 252405, 255255, 266815, 267546, 275653, 279378, 284635, 293761, 294528, 306153, 309291, 329266, 348195
OFFSET
1,1
LINKS
EXAMPLE
2415 is a term with 2+4 = 1+5.
MATHEMATICA
dsQ[n_]:=Module[{idn=IntegerDigits[n], len=IntegerLength[n]/2}, Total[Take[ idn, len]] ==Total[ Take[idn, -len]]]; Select[Flatten[ Table[Table[(n(n+1))/2, {n, Ceiling[(Sqrt[8 10^i+1]-1)/2], Floor[ (Sqrt[8 10^(i+1)+1]-1)/2]}], {i, 1, 5, 2}]], dsQ] (* Harvey P. Dale, Sep 29 2011 *)
CROSSREFS
Intersection of A000217 and A240927.
Sequence in context: A004434 A168109 A116055 * A068899 A053719 A217236
KEYWORD
easy,nonn,base
AUTHOR
Amarnath Murthy, Mar 21 2002
EXTENSIONS
Corrected and extended by Harvey P. Dale, Sep 29 2011
Offset changed by Andrew Howroyd, Sep 21 2024
STATUS
approved