login
A068461
Factorial, or factoradic, expansion of log(11) = Sum_{n>=1} a(n)/n!, with a(n) as large as possible.
5
2, 0, 2, 1, 2, 4, 3, 3, 1, 2, 4, 0, 3, 13, 1, 12, 12, 13, 1, 16, 16, 0, 16, 12, 10, 9, 1, 23, 3, 22, 0, 28, 11, 14, 23, 16, 0, 14, 6, 1, 1, 14, 4, 25, 43, 0, 29, 10, 41, 19, 47, 14, 0, 51, 10, 47, 37, 45, 46, 56, 57, 45, 10, 32, 61, 15, 9, 67, 5, 9, 22, 25, 65, 56, 24, 12, 71, 9, 57
OFFSET
1,1
EXAMPLE
log(11) = 2 + 0/2! + 2/3! + 1/4! + 2/5! + 4/6! + 3/7! + 3/8! + 1/9! + ...
MATHEMATICA
With[{b = Log[11]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* G. C. Greubel, Dec 05 2018 *)
PROG
(PARI) vector(30, n, if(n>1, t=t%1*n, t=log(11))\1) \\ Increase realprecision (e.g., \p500) to compute more terms. - M. F. Hasler, Nov 25 2018
(PARI) default(realprecision, 250); b = log(11); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Dec 05 2018
(Magma) SetDefaultRealField(RealField(250)); [Log(11)] cat [Floor(Factorial(n)*Log(11)) - n*Floor(Factorial((n-1))*Log(11)) : n in [2..80]]; // G. C. Greubel, Dec 05 2018
(Sage)
def a(n):
if n==1: return floor(log(11))
else: return expand(floor(factorial(n)*log(11)) - n*floor(factorial(n-1)*log(11)))
[a(n) for n in (1..80)] # G. C. Greubel, Dec 05 2018
CROSSREFS
Cf. A016634 (decimal expansion), A016739 (continued fraction).
Cf. A007514 vs. A075874 for factoradic expansion.
Cf. A067882 (log(2)), A322334 (log(3)), A322333 (log(5)), A068460 (log(7)).
Sequence in context: A182893 A206298 A076608 * A130456 A222049 A071497
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 10 2002
EXTENSIONS
Name edited and keyword cons,easy removed by M. F. Hasler, Nov 26 2018
STATUS
approved