login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067630
Denominators in power series for cos(x)*cosh(x).
5
1, 6, 2520, 7484400, 81729648000, 2375880867360000, 151476660579404160000, 18608907752179801056000000, 4015057936610313875842560000000, 1419041926536183233139035980800000000, 778117449996850714059458989711872000000000
OFFSET
0,2
FORMULA
cos(x)*cosh(x) = Sum_{n>=0} (-1)^n*x^(4*n)/a(n).
a(n) = (4*n)! / 4^n = A000680(2*n).
E.g.f.: 1/(1-x^4/4). - Mohammad K. Azarian, Mar 20 2012
a(n) = n!*A060706(n). - Bruno Berselli, Mar 21 2012
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = (cos(sqrt(2)) + cosh(sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = cos(1)*cosh(1). (End)
D-finite with recurrence: a(n) - (64*n^4 - 96*n^3 + 44*n^2 - 6*n)*a(n-1) = 0. - Georg Fischer, Aug 17 2021
MAPLE
f:= gfun:-rectoproc({a(n) - (64*n^4-96*n^3+44*n^2-6*n)*a(n-1), a(0)=1}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Aug 17 2021
MATHEMATICA
a[n_] := (4*n)!/4^n; Array[a, 10, 0] (* Amiram Eldar, Jan 18 2021 *)
PROG
(PARI) my(x='x+O('x^50), v=apply(denominator, Vec(cos(x)*cosh(x)))); vector(#v\4, k, v[4*k-3]) \\ Michel Marcus, Jan 18 2021
CROSSREFS
Sequence in context: A279533 A069643 A264801 * A181700 A199147 A097871
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 02 2002
STATUS
approved