login
A067618
Number of self-conjugate partitions of n into prime parts.
0
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 4, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 1, 3, 0, 0, 0, 5, 0, 0, 1, 6, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 1, 5, 0, 0, 0, 7, 0, 0, 0, 9, 0, 0, 0, 5, 0
OFFSET
0,26
MATHEMATICA
f[0, m_, k_] := 1; f[n_, 0, k_] := If[n==0, 1, 0]; f[n_, m_, k_] := If[n<0||m<0, 0, Module[{r}, f[n, m, k]=f[n, m-1, k]+If[PrimeQ[m+k], Sum[If[PrimeQ[r+k], f[n-r(2m-r), m-r-1, k+r], 0], {r, 1, m}], 0]]]; a[n_] := f[n, Floor[n/4]+1, 0]; (* f[n, m, k] = number of self-conjugate partitions of n with parts <= m such that every part+k is prime *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Feb 01 2002
EXTENSIONS
Edited by Dean Hickerson, Feb 11 2002
STATUS
approved