login
A067411
Third column of triangle A067410 and second column of A067417.
12
1, 4, 24, 144, 864, 5184, 31104, 186624, 1119744, 6718464, 40310784, 241864704, 1451188224, 8707129344, 52242776064, 313456656384, 1880739938304, 11284439629824, 67706637778944, 406239826673664
OFFSET
0,2
COMMENTS
Let f(k) be the sum of the smallest three positive divisors of k, g(k) be the sum of the largest two positive divisors of k, this sequence from a(2) onwards contains the numbers k for which g(k) is a positive integer power of f(k). - Yifan Xie, Jan 27 2024
FORMULA
a(n) = A067410(n+2, 2) = A067417(n+1, 1).
a(n) = 4 * 6^(n-1), for n >= 1, a(0)=1.
G.f.: (1-2*x)/(1-6*x).
E.g.f.: (2*exp(6*x)+1) / 3 = exp(3*x)*(cosh(3*x) + sinh(3*x)/3). - Paul Barry, Nov 20 2003
a(n) = Sum_{k=0..n} C(n,k) * A001045(n+k+1). - Paul Barry, Apr 19 2010
MATHEMATICA
CoefficientList[Series[(1-2x)/(1-6x), {x, 0, 30}], x] (* Harvey P. Dale, Feb 26 2015 *)
PROG
(PARI) a(n) = if(n<=0, 0, 4*6^(n-1) ); \\ Joerg Arndt, Feb 23 2014
CROSSREFS
A002001, A067412 (second and fourth column of A067410), A000244, A067403 (first and third column of A067417), A000400 (powers of 6).
Row sums of A038195.
Sequence in context: A114169 A121102 A307526 * A045915 A052609 A077613
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 25 2002
EXTENSIONS
Incorrect formula deleted by Harvey P. Dale, Feb 26 2015
Formula restored by Sean A. Irvine, Jan 10 2021
STATUS
approved