login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067317
Numbers k such that 1 + binomial(k,j) is prime for only 2 values of j (0 <= j <= k).
2
1, 3, 7, 15, 23, 31, 59, 63, 67, 81, 84, 93, 95, 127, 157, 170, 214, 239, 253, 255, 313, 470, 511, 622, 694, 1010, 1023, 1098, 1691, 2047, 3535, 3836, 3963, 4095, 6143, 7166, 8191, 11757, 12525, 12686, 16383, 32767
OFFSET
1,2
FORMULA
Numbers k such that A067316(k) = 2.
EXAMPLE
The 2 values of j are 0 and n, which give the prime 2. The sequence includes all numbers of the form 2^m-1 since binomial(2^m-1,j) is odd for all j.
MATHEMATICA
test[n_] := Module[{}, For[i=1, 2i<=n, i++, If[PrimeQ[Binomial[n, i]+1], Return[False]]]; True]; For[n=1, True, n++, If[test[n], Print[n]]]
PROG
(PARI) isok(n) = sum(j=0, n, isprime(1 + binomial(n, j))) == 2; \\ Michel Marcus, Oct 30 2018
(PARI) is(n) = if(n == 1, 1, for(i=1, n\2, if(isprime(binomial(n, i) + 1), return(0))); 1); \\ Amiram Eldar, Jul 18 2024
CROSSREFS
Cf. A067316.
Sequence in context: A069119 A261413 A187220 * A349743 A141354 A181106
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Jan 15 2002
EXTENSIONS
More terms from Jon E. Schoenfield, May 30 2010
a(35)-a(41) from Robert Israel, Mar 09 2020
a(42) from Amiram Eldar, Jul 18 2024
STATUS
approved