login
A066518
Anti-divisor class sums of n.
1
0, 0, 0, -1, 1, 0, -2, 2, 0, -2, 2, -1, -1, 2, 0, -2, 0, 2, -2, 2, 0, -4, 4, -1, -1, 2, -2, 0, 2, 0, -4, 2, 2, -2, 2, 0, -4, 2, 2, -3, 3, -2, 0, 2, -2, 0, 0, 2, -4, 4, 0, -6, 6, 0, -2, 2, -2, -2, 2, 1, -1, 0, 2, -2, 2, -2, -4, 6, 0, -2, 0, 0, -2, 4, 0, -4, 2, 2, -2, 0, 2, -6, 6, -1, -3, 4, -4, 2, 2, 0, -2, 0, 0, -4, 6, 0, -6, 6, 0, -2, 0, 0, -2
OFFSET
1,7
COMMENTS
An anti-divisor of n is an integer d in [2,n-1] such that n == (d-1)/2, d/2, or (d+1)/2 (mod d), the class of d being -1, 0, or 1, respectively. The class sum of n is the sum of the classes of all of its anti-divisors.
See A066272 for definition of anti-divisor.
FORMULA
f(n)=sum(ad class)
EXAMPLE
The ad's of 10 are 3, 4 and 7, with classes -1, 0 and -1, so f(10)=-2.
MATHEMATICA
a[n_ ] := Sum[Which[Mod[n, d]==(d-1)/2, -1, Mod[n, d]==(d+1)/2, 1, True, 0], {d, 2, n-1}]
CROSSREFS
Cf. A066519.
Sequence in context: A035668 A307757 A215283 * A218491 A111165 A349812
KEYWORD
sign
AUTHOR
Jon Perry, Jan 06 2002
EXTENSIONS
Edited by Dean Hickerson, Jan 17 2002
STATUS
approved