login
A066290
Numbers m such that DivisorSigma(4*k-2, m) mod m = 0 holds presumably for all k; that is, (4k-2)-power-sums of divisors of m are divisible by m for all k.
1
1, 10, 60, 65, 130, 150, 260, 780, 1105, 2210, 4420, 8840, 13260, 19720, 20737, 32045, 41474, 55250, 64090, 82948, 103685, 128180, 207370, 207553, 221000, 248844, 256360, 295800, 331500, 352529, 384540, 414740, 415106, 450840, 512720, 705058, 829480, 830212
OFFSET
1,2
FORMULA
DivisorSigma(4k-2, m)/m is an integer for k = 1, 2, 3, .., 200, ...
EXAMPLE
Tested for each m and k < 200. Proof for several values of k seems not so tedious because the number of divisors of the terms of the sequence is not so large: {1, 4, 12, 4, 8, 12, 12, 24, 8, 16, 24, 32, 48, 32, 4, 16, 8, 32, 32, 12, 8, 48, 16, 8, 64, 24, 64, 96, 96, 8, 96, 24, 16, 96, 80, 16, 32, 24}.
MATHEMATICA
lastSeq = {}; max = 100; While[seq = Reap[For[n = 1, n < 10^6, n++, If[AllTrue[Range[max], Mod[DivisorSigma[4 # - 2, n], n] == 0&], Print[n]; Sow[n]]]][[2, 1]]; seq != lastSeq, lastSeq = seq; max = max + 100; Print["max = ", max]]; seq (* Jean-François Alcover, Oct 02 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 12 2001
EXTENSIONS
More terms from Jean-François Alcover, Oct 02 2016
STATUS
approved