login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers which are sums of squares of some subset of divisors.
4

%I #15 May 27 2024 09:17:30

%S 1,4,9,16,20,25,30,36,49,64,80,81,90,100,120,121,126,130,144,150,169,

%T 180,195,196,210,225,252,256,264,270,272,280,289,294,300,315,320,324,

%U 330,336,350,360,361,378,390,396,400,414,420,441,450,468,480,484,500

%N Numbers which are sums of squares of some subset of divisors.

%C If m is in the sequence then so is m*k^2 for k >= 1. - _David A. Corneth_, Jan 22 2024

%H David A. Corneth, <a href="/A066213/b066213.txt">Table of n, a(n) for n = 1..10000</a>

%H David A. Corneth, <a href="/A066213/a066213.gp.txt">PARI program</a>

%e 20 is in the list since 20 = 2^2 + 4^2 and 2 and 4 are divisors of 20

%p isA066213 := proc(n)

%p local S,els;

%p S:=subsets(numtheory[divisors](n));

%p while not S[finished] do

%p els:=S[nextvalue]() ;

%p if add(d^2,d=els) = n then

%p return true ;

%p end if ;

%p end do;

%p false

%p end proc:

%p for n from 1 do

%p if isA066213(n) then

%p print(n) ;

%p end if;

%p end do: # _R. J. Mathar_, Oct 09 2023

%t okQ[k_] := AnyTrue[Subsets[Select[Divisors[k]^2, # <= k&]], Total[#]==k&];

%t Reap[For[k = 1, k <= 5000, k++, If[okQ[k], Print[k]; Sow[k]]]][[2, 1]] (* _Jean-François Alcover_, May 27 2024 *)

%o (PARI) \\ See PARI link

%Y Cf. A005835, A066214, A066215, A066216.

%K nonn

%O 1,2

%A _Erich Friedman_, Dec 17 2001

%E Offset 1 from _David A. Corneth_, Jan 22 2024