login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bessel polynomial {y_n}''(-2).
1

%I #12 Aug 17 2017 05:54:06

%S 0,0,6,-150,3870,-110670,3538500,-125941284,4953759300,-213744815460,

%T 10047637214010,-511403305348650,28029852267603186,

%U -1646397200571955650,103190849406195456360,-6875135229835376875560,485256294032090950981800

%N Bessel polynomial {y_n}''(-2).

%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

%H G. C. Greubel, <a href="/A065946/b065946.txt">Table of n, a(n) for n = 0..360</a>

%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>

%F From _G. C. Greubel_, Aug 14 2017: (Start)

%F a(n) = 4*n*(n - 1)*(1/2)_{n}*(-4)^(n - 2)*hypergeometric1f1[(2-n, -2*n, -1), where (a)_{n} is the Pochhammer symbol.

%F E.g.f.: (1/16)*(1 + 4*x)^(-5/2)*((24*x^2 + 20*x + 2)*sqrt(1 + 4*x) + (16*x^3 - 12*x^2 - 24*x - 2))*exp((sqrt(1 + 4*x) -1)/2). (End)

%F G.f.: (6*x^2/(1-x)^5)*hypergeometric2f0(3,5/2; - ; -4*x/(1-x)^2). - _G. C. Greubel_, Aug 16 2017

%t Join[{0, 0}, Table[4*n*(n - 1)*Pochhammer[1/2, n]*(-4)^(n - 2)*

%t Hypergeometric1F1[2 - n, -2*n, -1], {n,2,50}]] (* _G. C. Greubel_, Aug 14 2017 *)

%o (PARI) for(n=0,50, print1(sum(k=0,n-2, ((n+k+2)!/(4*k!*(n-k-2)!))*(-1)^k), ", ")) \\ _G. C. Greubel_, Aug 14 2017

%Y Cf. A001518, A001516.

%K sign

%O 0,3

%A _N. J. A. Sloane_, Dec 08 2001