login
A065857
The (10^n)-th composite number.
3
4, 18, 133, 1197, 11374, 110487, 1084605, 10708555, 106091745, 1053422339, 10475688327, 104287176419, 1039019056246, 10358018863853, 103307491450820, 1030734020030318, 10287026204717358, 102692313540015924, 1025351434864118026, 10239531292310798956, 102270102190290407386
OFFSET
0,1
REFERENCES
A. E. Bojarincev, Asymptotic expressions for the n-th composite number. Univ. Mat. Zap. 6:21-43(1967). [in Russian]
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 133, p. 45, Ellipses, Paris 2008.
LINKS
Laurentiu Panaitopol, Some properties of the series of composed [sic] numbers, Journal of Inequalities in Pure and Applied Mathematics 2:3 (2001).
J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), pp. 64-94.
FORMULA
a(n) = A002808(A011557(n)).
a(n) = 10^(n + n/log n + 2n/log^2 + 4n/log^3 n + O(n/log^4 n)). See Bojarincev for an asymptotic expansion. - Charles R Greathouse IV, May 30 2013
EXAMPLE
The 100th composite number is C(100)=133, while the 100th prime is 541. In general: A000720(m) < A062298(m) < m < A002808(m) < A000040(m), for example pi(100)=25 < 75 < 100 < C(100)=133 < prime(100)=541.
MATHEMATICA
Composite[n_Integer] := Block[ {k = n + PrimePi[n] + 1 }, While[ k != n + PrimePi[k] + 1, k = n + PrimePi[k] + 1]; Return[k]];
Table[Composite[10^n], {n, 0, 9}]
PROG
(PARI) a(n)=my(k=10^n); forcomposite(n=4, 2*k+2, if(k--==0, return(n))) \\ Charles R Greathouse IV, May 30 2013
KEYWORD
nonn,hard
AUTHOR
Labos Elemer, Nov 26 2001
EXTENSIONS
More terms from Robert G. Wilson v, Nov 26 2001
a(14) from Lekraj Beedassy, Jul 14 2008
a(15)-a(19) from Chai Wah Wu, Apr 16 2018
a(20) from Chai Wah Wu, Aug 23 2018
STATUS
approved