login
A065448
Numbers k such that k is congruent to the product of its digits modulo the sum of its digits.
1
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 19, 20, 29, 30, 31, 33, 36, 39, 40, 49, 50, 52, 55, 59, 60, 63, 64, 69, 70, 71, 77, 79, 80, 89, 90, 99, 100, 102, 108, 110, 113, 118, 119, 120, 132, 140, 150, 166, 168, 180, 190, 195, 198, 200, 201, 204
OFFSET
1,2
LINKS
EXAMPLE
14 is in the sequence because 14 == 4 (mod 5).
MATHEMATICA
Select[Range[2000], Mod[ # - Apply[Times, IntegerDigits[[ # ]]], Apply[Plus, IntegerDigits[[ # ]]]] == 0 &]
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x-10*(x\10); x\=10); return(s + x) } ProdD(x)= { local(p=1); while (x>9 && p>0, p*=(x-10*(x\10)); x\=10); return(p*x) } { n=0; for (m=1, 10^9, p=ProdD(m); s=SumD(m); if ((m - p)%s == 0, write("b065448.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 19 2009
CROSSREFS
Sequence in context: A034894 A263564 A061430 * A254656 A211408 A107322
KEYWORD
base,nonn
AUTHOR
Santi Spadaro, Nov 18 2001
STATUS
approved