login
A065033
1 appears three times, other numbers twice.
24
1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35
OFFSET
0,4
COMMENTS
Gives the number of terms in n-th row of many common tables.
Number of partitions of the (n+1)-th Fibonacci number into distinct Fibonacci numbers: a(n) = A000119(A000045(n)), see also A098641. - Reinhard Zumkeller, Apr 24 2005
a(n) = length of run n+1 of consecutive 4s in A254338. - Reinhard Zumkeller, Feb 27 2015
This is the Engel expansion of A070910 + A096789. - Benedict W. J. Irwin, Dec 16 2016
FORMULA
a(0)=a(1)=a(2)=1, a(3)=2, a(n) = a(n-1)+a(n-2)-a(n-3) for n>3 . G.f.: (1-x^2+x^3)/(1-x-x^2+x^3). - Philippe Deléham, Sep 28 2006
a(n) = floor((n+1)/2) + 0^n. - Reinhard Zumkeller, Feb 27 2015
MATHEMATICA
Array[Floor[#/2] &, 61] /. 0 -> 1 (* Michael De Vlieger, Mar 10 2020 *)
PROG
(PARI) { for (n=0, 1000, if (n<3, a=1, if (n%2, a++)); write("b065033.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 03 2009
(Haskell)
a065033 n = 0 ^ n + div (n + 1) 2 -- Reinhard Zumkeller, Feb 27 2015
CROSSREFS
Cf. A254338.
Sequence in context: A127365 A130472 A076938 * A080513 A004526 A140106
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 04 2001
STATUS
approved