OFFSET
1,1
COMMENTS
Corresponds to the only solution of the Diophantine equation 4^n = x*3^n + y*2^n + z*1^n with constraints 0 <= y < 3^n/2^n, 0 <= z < 2^n.
Binary order (cf. A029837) of a(n) is close to n.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..250
FORMULA
EXAMPLE
4^6 = 4096 = 729 + 729 + 729 + 729 + 729 + 64 + 64 + 64 + 64 + 64 + 64 + 64 + 1 + 1 + 1 = 5*3^6 + 7*2^6 + 3*1^6, so a(6) = 5 + 7 + 3 = 15.
PROG
(PARI) {for(n=1, 32, a=divrem(4^n, 3^n); b=divrem(a[2], 2^n); print1(a[1]+b[1]+b[2], ", "))}
(PARI) { f=t=w=1; for (n=1, 250, f*=4; t*=3; w*=2; a=divrem(f, t); b=divrem(a[2], w); write("b064630.txt", n, " ", a[1]+b[1]+b[2]) ) } \\ Harry J. Smith, Sep 20 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 01 2001
EXTENSIONS
Edited by Klaus Brockhaus, May 24 2003
STATUS
approved