login
A064580
Triangle associated with rooted trees with a degree constraint (A036765).
5
1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 13, 1, 5, 14, 28, 40, 36, 1, 6, 20, 48, 87, 118, 104, 1, 7, 27, 75, 161, 273, 357, 309, 1, 8, 35, 110, 270, 536, 866, 1100, 939, 1, 9, 44, 154, 423, 951, 1782, 2772, 3441, 2905, 1, 10, 54, 208, 630, 1572, 3310, 5928, 8946, 10900, 9118
OFFSET
0,5
COMMENTS
Main diagonal is A036765. - Paul D. Hanna, Nov 18 2016
FORMULA
a(n, k) = a(n-1, k) + a(n-1, k-1) + a(n-1, k-2) + a(n-1, k-3) with a(0, 0)=1 and a(n, k)=0 if n < k or k < 0.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 5, 5;
1, 4, 9, 14, 13;
1, 5, 14, 28, 40, 36;
...
MATHEMATICA
a[n_, k_] /; 0 <= k <= n = a[n, k] = a[n - 1, k] + a[n - 1, k - 1] + a[n - 1, k - 2] + a[n - 1, k - 3]; a[0, 0] = 1; a[_, _] = 0;
Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
PROG
(Sage) # uses[riordan_array from A256893]
M = riordan_array(1, x/(1+x+x^2+x^3), 12).inverse()
for m in M[1:]:
print([r for r in reversed(list(m)) if r != 0]) # Peter Luschny, Aug 17 2016
CROSSREFS
Columns include A000012, A000027, A000096.
Main diagonal is A036765.
The sequence of triangles A010054 (triangle indicator), A007318 (Pascal), A026300 (Motzkin), A064580, ... converges to the triangle A009766 (Catalan).
Row sums give A159772.
Sequence in context: A139687 A188181 A064581 * A009766 A059718 A076038
KEYWORD
nonn,tabl
AUTHOR
Henry Bottomley, Sep 21 2001
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007
STATUS
approved