Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Aug 09 2017 12:29:28
%S 1,1,8,176,5888,238848,10770432,518909952,26156466176,1362414338048,
%T 72751723839488,3961437637574656,219123329636761600,
%U 12278352550322765824,695492547259800748032,39759203500044029263872
%N Generalized Catalan numbers C(4,4; n).
%C See triangle A064879 with columns m built from C(m,m; n), m >= 0, also for Derrida et al. and Liggett references.
%H J. Abate, W. Whitt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Whitt/whitt6.html">Brownian Motion and the Generalized Catalan Numbers</a>, J. Int. Seq. 14 (2011) # 11.2.6, corollary 6.
%F a(n)= ((16^(n-1))/(n-1))*sum((m+1)*(m+2)*binomial(2*(n-2)-m, n-2-m)*((1/4)^(m+1)), m=0..n-2), n >= 2, a(0) := 1=: a(1).
%F G.f.:(1-7*x*c(16*x))/(1-4*x*c(16*x))^2 = c(16*x)*(7+9*c(16*x))/(1+3*c(16*x))^2 = (7*c(16*x)*(4*x)^2+3*(3+11*x))/(3+4*x)^2 with c(x)= A(x) g.f. of Catalan numbers A000108.
%F 3*(-n+1)*a(n) +4*(47*n-120)*a(n-1) +128*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Aug 09 2017
%Y A064341.
%K nonn,easy
%O 0,3
%A _Wolfdieter Lang_, Oct 12 2001