login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064325
Generalized Catalan numbers C(-3; n).
9
1, 1, -2, 13, -98, 826, -7448, 70309, -686090, 6865150, -70057772, 726325810, -7628741204, 81002393668, -868066319108, 9376806129493, -101988620430938, 1116026661667318, -12277755319108748, 135715825209716038, -1506587474535945788, 16789107646422189868, -187747069029477151328
OFFSET
0,3
COMMENTS
See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references.
LINKS
FORMULA
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-3)^m/n.
a(n) = (1/4)^n*(1 + 3*Sum_{k=0..n-1} C(k)*(-3*4)^k), n >= 1, a(0) = 1; with C(n) = A000108(n) (Catalan).
G.f.: (1+3*x*c(-3*x)/4)/(1-x/4) = 1/(1-x*c(-3*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = hypergeometric([1-n, n], [-n], -3) for n>0. - Peter Luschny, Nov 30 2014
MATHEMATICA
a[0] = 1;
a[n_] := Sum[(n-m) Binomial[n+m-1, m] (-3)^m/n, {m, 0, n-1}];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 30 2018 *)
CoefficientList[Series[(7 +Sqrt[1+12*x])/(2*(4-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
PROG
(Sage)
def a(n):
if n == 0: return 1
return hypergeometric([1-n, n], [-n], -3).simplify()
[a(n) for n in range(24)] # Peter Luschny, Nov 30 2014
(Sage) ((7 +sqrt(1+12*x))/(2*(4-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
(PARI) a(n) = if (n==0, 1, sum(m=0, n-1, (n-m)*binomial(n-1+m, m)*(-3)^m/n)); \\ Michel Marcus, Jul 30 2018
(PARI) my(x='x+O('x^30)); Vec((7 +sqrt(1+12*x))/(2*(4-x))) \\ G. C. Greubel, May 03 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (7 +Sqrt(1+12*x))/(2*(4-x)) )); // G. C. Greubel, May 03 2019
CROSSREFS
Sequence in context: A184019 A300633 A340451 * A365155 A123619 A341954
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Sep 21 2001
STATUS
approved