login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063754
Dirichlet convolution of totient and cototient.
1
0, 1, 1, 3, 1, 7, 1, 8, 5, 11, 1, 20, 1, 15, 13, 20, 1, 31, 1, 32, 17, 23, 1, 52, 9, 27, 21, 44, 1, 71, 1, 48, 25, 35, 21, 88, 1, 39, 29, 84, 1, 99, 1, 68, 61, 47, 1, 128, 13, 83, 37, 80, 1, 123, 29, 116, 41, 59, 1, 200, 1, 63, 81, 112, 33, 155, 1, 104, 49, 159, 1, 228, 1, 75, 101
OFFSET
1,4
COMMENTS
a(n) = 1 if and only if n is prime. - Robert Israel, Feb 04 2018
a(n) = n+1 if and only if n = 2*p with p an odd prime (A100484 \ {4}). - Bernard Schott, Jun 19 2023
LINKS
FORMULA
a(n) = Sum_{d|n} A000010(d)*A051953(n/d).
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{k=1..n} A051953(gcd(n,k)).
a(n) = Sum_{k=1..n} A051953(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)).
a(n) = A018804(n) - A029935(n). (End)
Sum_{k=1..n} a(k) ~ (1/(2*zeta(2)))*(1 - 1/zeta(2)) * n^2 * (log(n) + 2*gamma - 1/2 - ((zeta(2)-2)/(zeta(2)-1))*(zeta'(2)/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 11 2024
EXAMPLE
n = 24: divisors = {1, 2, 3, 4, 6, 8, 12, 24}, d-phi(d) = {0, 1, 1, 2, 4, 4, 8, 16}, phi(n/d) = {8, 4, 4, 2, 2, 2, 1, 1}, products = {0, 4, 4, 4, 8, 8, 8, 16}, a(24) = 52.
MAPLE
f:= n -> add(numtheory:-phi(d)*(n/d - numtheory:-phi(n/d)), d=numtheory:-divisors(n)):
map(f, [$1..100]); # Robert Israel, Feb 04 2018
MATHEMATICA
f1[p_, e_] := (e*(p - 1)/p + 1)*p^e; f2[p_, e_] := (e+1)*(p^e - p^(e-1)) - (e-1)*(p^(e-1) - p^(e-2)); a[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; a[1] = 0; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, eulerphi(d)*(n/d - eulerphi(n/d))); \\ Michel Marcus, Feb 05 2018
KEYWORD
easy,nonn,look
AUTHOR
Labos Elemer, Aug 14 2001
EXTENSIONS
Offset corrected by Robert Israel, Feb 04 2018
STATUS
approved