login
A062363
a(n) = Sum_{d|n} d!.
15
0, 1, 3, 7, 27, 121, 729, 5041, 40347, 362887, 3628923, 39916801, 479002353, 6227020801, 87178296243, 1307674368127, 20922789928347, 355687428096001, 6402373706091609, 121645100408832001, 2432902008180268947
OFFSET
0,3
LINKS
FORMULA
G.f.: Sum_{m>0} m!*x^m/(1-x^m). - Vladeta Jovovic, Aug 06 2004
Inverse Moebius transform of factorials (A000142). - Jonathan Vos Post, Mar 19 2006
a(n) ~ n!. - Vaclav Kotesovec, Mar 14 2015
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k-1)!)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 23 2018
EXAMPLE
The divisors of 3 are 1 and 3 so 1! + 3! = 7. The divisors of 4 are 1, 2 and 4 so 1! + 2! + 4! = 27.
MATHEMATICA
nmax=20; CoefficientList[Series[Sum[m!*x^m/(1-x^m), {m, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 14 2015 *)
Join[{0}, Table[Total[Divisors[n]!], {n, 20}]] (* Harvey P. Dale, Aug 15 2024 *)
PROG
(PARI) a(n)=if(n<1, 0, sumdiv(n, d, d!));
CROSSREFS
Sequence in context: A347639 A350751 A062795 * A333362 A242328 A136580
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jul 07 2001
STATUS
approved