login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062027
a(1) = a(2) = a(3) = 1 and a(n) = 24*binomial(n+1, 5) + n*(n^2 - n + 6) for n > 3.
2
1, 1, 1, 96, 274, 720, 1680, 3520, 6750, 12048, 20284, 32544, 50154, 74704, 108072, 152448, 210358, 284688, 378708, 496096, 640962, 817872, 1031872, 1288512, 1593870, 1954576, 2377836, 2871456, 3443866, 4104144, 4862040, 5728000
OFFSET
1,4
COMMENTS
Previous name: a(1) = a(2) = a(3) = 1; and for n>3 a(n) = 1*2*3*4 + 2*3*4*5 + 3*4*5*6 + ... + (n-1)*n*1*2 + n*1*2*3, the sum of the cyclic product of terms taken four at a time, final term being n*1*2*3 = 6n.
FORMULA
a(n) = (n+1)*(n)*(n-1)*(n-2)*(n-3)/5 + n*(n^2 - n + 6), for n>3.
From G. C. Greubel, May 05 2022: (Start)
G.f.: -5*x*(1 + 3*x + 7*x^2) + 2*x*(3 - 10*x + 15*x^2 + 4*x^4)/(1-x)^6.
E.g.f.: (1/5)*x*(30 + 10*x + 5*x^2 + 5*x^3 + x^4)*exp(x) - (5/6)*x*(6 + 9*x + 7*x^2). (End)
EXAMPLE
a(5) = 1*2*3*4 + 2*3*4*5 + 3*4*5*1 + 4*5*1*2 + 5*1*2*3 = 274.
MATHEMATICA
Table[24*Binomial[n+1, 5] +n*(n^2-n+6) -5*(2^n-1)*Boole[n<4], {n, 40}] (* G. C. Greubel, May 05 2022 *)
PROG
(PARI) a(n) = { if (n<=3, 1, (n+1)*n*(n-1)*(n-2)*(n-3)/5 +n*(n^2-n+6)) } \\ Harry J. Smith, Jul 30 2009
(SageMath) [24*binomial(n+1, 5) +n*(n^2-n+6) -5*(2^n-1)*bool(n<4) for n in (1..40)] # G. C. Greubel, May 05 2022
CROSSREFS
Sequence in context: A232939 A202591 A202584 * A320883 A048189 A304830
KEYWORD
nonn,easy,changed
AUTHOR
Amarnath Murthy, Jun 02 2001
EXTENSIONS
More terms from Jason Earls, Jun 07 2001
Term a(4) corrected by Harry J. Smith, Jul 30 2009
Name changed by G. C. Greubel, May 05 2022
STATUS
approved