OFFSET
1,2
COMMENTS
These sublattices are in 1-1 correspondence with matrices
[a b d]
[0 c e]
[0 0 f]
with acf = n, b = 0..c-1, d = 0..f-1, e = 0..f-1, gcd(a,b,c,d,e,f) = 1.
From Álvar Ibeas, Oct 30 2015: (Start)
a(n) is the number of 2-generated subgroups of Z^3 with order n.
(End)
LINKS
FORMULA
From Álvar Ibeas, Oct 30 2015: (Start)
a(n) = Sum_{d^3 | n} mu(d) * A001001(n/d^3).
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) / zeta(3s). (End)
Sum_{k=1..n} a(k) ~ Pi^2 * zeta(3) * n^3 / (18*zeta(9)). - Vaclav Kotesovec, Feb 01 2019
Multiplicative with a(p) = p^2+p+1, and a(p^e) = p^(e-2)*(p^e + (p^(e-1)-1)/(p-1)) for e >= 2. - Amiram Eldar, Aug 27 2023
MATHEMATICA
f[p_, e_] := (p^2 + p + 1) * If[e == 1, 1, p^(e - 2)*(p^e + (p^(e - 1) - 1)/(p - 1))]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
N. J. A. Sloane, May 11 2001
STATUS
approved