login
A060860
Numbers k such that k^2-1 and k^2 are consecutive powerful numbers.
4
3, 17, 26, 99, 485, 577, 1351, 3363, 19601, 24335, 70226, 114243, 470449, 665857, 930249, 2862251, 3650401, 3880899, 22619537, 39480499, 130576328, 131836323, 189750626, 456335045, 768398401, 1184384449, 4478554083, 9863382151, 10850138895, 26102926097
OFFSET
1,1
COMMENTS
a(31) > 10^11. - Donovan Johnson, Nov 15 2011
a(n) - 1 is a term of A335851. - Amiram Eldar, Feb 23 2024
FORMULA
a(n) = sqrt(A060859(n) + 1). - Amiram Eldar, Feb 23 2024
EXAMPLE
592192224 = 2^5*3^2*13^2*23^3 = 24334*24336, 592192225 = 5^2*31^2*157^2 = 24335^2.
MATHEMATICA
seq[max_] := Module[{p = Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]], q, i}, q = Union[p, 2*Select[p, # <= max && OddQ[#] &]]; i = Position[Differences[q], 2] // Flatten; Sqrt[q[[i]]*(q[[i]] + 2) + 1]]; seq[10^10] (* Amiram Eldar, Feb 23 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 04 2001
EXTENSIONS
Corrected and extended by Jud McCranie, Jul 08 2001
a(21)-a(24) from Donovan Johnson, Apr 27 2008
a(25)-a(26) from Donovan Johnson, Dec 07 2008
a(27)-a(28) from Donovan Johnson, Jun 17 2011
a(29)-a(30) from Donovan Johnson, Nov 15 2011
STATUS
approved