OFFSET
1,5
COMMENTS
Table read by antidiagonals: entry (n,k) gives number of partitions of n objects into parts of k kinds. - Franklin T. Adams-Watters, Dec 28 2006
FORMULA
G.f. A(n;x) for n-th row satisfies A(n;x) = Sum_{k=1..n} A000041(k-1)*A(n-k;x)*x^(k-1), A(0;x) = 1. - Vladeta Jovovic, Jan 02 2004
EXAMPLE
Table (row k, k >= 0: number of partitions of n, n >= 0, into parts of k kinds):
Array begins:
=======================================================================
k\n| 0 1 2 3 4 5 6 7 8 9 10
---|-------------------------------------------------------------------
1 | 1 1 2 3 5 7 11 15 22 30 42
2 | 1 2 5 10 20 36 65 110 185 300 481
3 | 1 3 9 22 51 108 221 429 810 1479 2640
4 | 1 4 14 40 105 252 574 1240 2580 5180 10108
5 | 1 5 20 65 190 506 1265 2990 6765 14725 31027
6 | 1 6 27 98 315 918 2492 6372 15525 36280 81816
7 | 1 7 35 140 490 1547 4522 12405 32305 80465 192899
8 | 1 8 44 192 726 2464 7704 22528 62337 164560 417140
9 | 1 9 54 255 1035 3753 12483 38709 113265 315445 841842
10 | 1 10 65 330 1430 5512 19415 63570 195910 573430 1605340
11 | 1 11 77 418 1925 7854 29183 100529 325193 997150 2919411
...
Triangle (row n, n >= 0: number of partitions of n into parts of n - k kinds, 0 <= k <= n) (antidiagonals of above table) (parenthesized last term on each row, which would correspond to row k = 0 in above table)
Triangle begins: (column k: n - k kinds of parts)
===================================
n\k| 0 1 2 3 4 5 6 7
---+-------------------------------
0 |(1)
1 | 1, (0)
2 | 1, 1, (0)
3 | 1, 2, 2, (0)
4 | 1, 3, 5, 3, (0)
5 | 1, 4, 9, 10, 5, (0)
6 | 1, 5, 14, 22, 20, 7, (0)
7 | 1, 6, 20, 40, 51, 36, 11, (0)
...
MATHEMATICA
t[n_, k_] := CoefficientList[ Series[ Product[1/(1 - x^i)^n, {i, k}], {x, 0, k}], x][[k]]; (* Robert G. Wilson v, Aug 08 2018 *)
t[n_, k_]; = IntegerPartitions[n, {k}]; Table[ t[n - k + 1, k], {n, 12}, {k, n}] // Flatten (* Robert G. Wilson v, Aug 08 2018 *)
CROSSREFS
Cf. A067687 (table antidiagonal sums, triangle row sums).
KEYWORD
AUTHOR
Bo T. Ahlander (ahlboa(AT)isk.kth.se), May 03 2001
EXTENSIONS
More terms from Vladeta Jovovic, Jan 02 2004
STATUS
approved