login
A060665
Numbers k such that sigma(x) = k has exactly 9 solutions.
12
360, 480, 1488, 1800, 1824, 2184, 2232, 2640, 3120, 3420, 3696, 3744, 3960, 4200, 5292, 5580, 5808, 6144, 7344, 7980, 8100, 8352, 8448, 8784, 9144, 10164, 10296, 11592, 11664, 11970, 12432, 13968, 14520, 14560, 15504, 15600, 15912, 16224
OFFSET
1,1
COMMENTS
Do we have a(n) ~ c*n where c ~= 700? - David A. Corneth, Sep 23 2019
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10046 (first 8577 terms from Robert Israel, terms <= 7*10^6)
EXAMPLE
360 = sigma(120) = sigma(174) = sigma(184) = sigma(190) = sigma(267) = sigma(295) = sigma(319) = sigma(323) = sigma(359).
MAPLE
N:= 60000: # to get terms <= N
V:= Vector(N):
for k from 1 to N-1 do
t:= numtheory:-sigma(k);
if t <= N then V[t]:= V[t]+1 fi
od:
select(t -> V[t]=9, [$1..N]); # Robert Israel, Sep 22 2019
MATHEMATICA
a = Table[ 0, {20000} ]; Do[ s = DivisorSigma[ 1, n ]; If[ s < 20001, a[ [ s ] ]++ ], {n, 1, 20000} ]; Select[ Range[ 20000 ], a[ [ # ] ] == 9 & ]
PROG
(PARI) upto(n) = {my(v = vecsort(vector(n, i, sigma(i))), res = List()); for(i = 2, #v - 9, if(v[i-1] <= n && v[i-1] != v[i] && v[i] == v[i + 8] && v[i] != v[i+9], listput(res, v[i]))); res} \\ David A. Corneth, Sep 23 2019
(PARI) is(k) = invsigmaNum(k) == 9 \\ Amiram Eldar, Nov 18 2024, using Max Alekseyev's invphi.gp
CROSSREFS
Cf. A000203.
Number of solutions: A007369 (0), A007370 (1), A007371 (2), A007372 (3), A060660 (4), A060661 (5), A060662 (6), A060663 (7), A060664 (8), this sequence (9), A060666 (10), A060678 (11), A060676 (12).
Sequence in context: A031966 A137487 A069478 * A323024 A072414 A375075
KEYWORD
nonn,changed
AUTHOR
Robert G. Wilson v, Apr 18 2001
STATUS
approved