login
A060260
Numbers k such that prime(k), prime(k+1) and prime(k+2) have 10 as a primitive root, but prime(k-1) and prime(k+3) do not.
4
55, 75, 141, 164, 184, 199, 358, 371, 380, 432, 559, 702, 745, 808, 825, 858, 882, 1077, 1097, 1279, 1299, 1303, 1328, 1408, 1431, 1486, 1502, 1558, 1654, 1702, 1724, 1744, 1768, 1820, 1835, 1873, 1901, 1905, 1953, 1977, 2050, 2148, 2216, 2220, 2267
OFFSET
1,1
COMMENTS
A prime p has 10 as a primitive root iff the length of the period of the decimal expansion of 1/p is p-1.
LINKS
MATHEMATICA
test[p_] := MultiplicativeOrder[10, p]===p-1; Select[Range[2, 2500], test[Prime[ # ]]&&test[Prime[ #+1]]&&test[Prime[ #+2]]&&!test[Prime[ #-1]]&&!test[Prime[ #+3]]&]
CROSSREFS
The corresponding primes are in A060261.
Sequence in context: A053719 A217236 A050781 * A152080 A236769 A119224
KEYWORD
nonn
AUTHOR
Jeff Burch, Mar 23 2001
EXTENSIONS
Edited by Dean Hickerson, Jun 17 2002
STATUS
approved