OFFSET
0,2
COMMENTS
K. R. Matthews (Feb 2007) showed that lim_{n -> oo} a(n)/2^n = 0.7427.... - A.H.M. Smeets, Nov 14 2017
LINKS
K. R. Matthews, On the continued fraction expansion of sqrt(2^(2n+1)), Feb 2007.
FORMULA
EXAMPLE
For n=5 we look at the square root of 2^11 = 2048, and find that the cycle has length 24. Here is Maple's calculation: cfrac(sqrt(2048),'periodic','quotients') = [[45],[3,1,12,5,1,1,2,1,2,4,1,21,1,4,2,1,2,1,1,5,12,1,3,90]], the periodic part having length 24.
MAPLE
with(numtheory): [seq(nops(cfrac(sqrt(2^(2*k-1)), 'periodic', 'quotients')[2]), k=1..15)];
MATHEMATICA
Array[Length@ ContinuedFraction[Sqrt[2^(2 # + 1)]][[-1]] &, 15, 0] (* Michael De Vlieger, Oct 09 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 01 2001
EXTENSIONS
More terms from Don Reble, Oct 31 2001
a(32) = 3190297400 from Don Reble, Feb 10 2007
a(33)-a(35) from Keith Matthews (keithmatt(AT)gmail.com), Feb 16 2007, Feb 28 2007
Name clarified by Joerg Arndt, Oct 09 2017
a(36)-a(37) from Chai Wah Wu, Sep 26 2019
a(38)-a(40) from Chai Wah Wu, Sep 30 2019
STATUS
approved