login
A059774
Consider the line segment in R^n from the origin to the point P=(1,2,3,...,n); let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times P.P.
2
1, 3, 9, 21, 40, 75, 120, 189, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470, 2870, 3311, 3795, 4324, 4900, 5525, 6201, 6930, 7714, 8555, 9455, 10416, 11440, 12529, 13685, 14910, 16206, 17575, 19019, 20540, 22140, 23821, 25585, 27434, 29370
OFFSET
2,2
COMMENTS
P.P is given by A000330(n). For n >= 10, a(n) = A000330(n-1).
Officially these are just conjectures so far.
LINKS
N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, Fat Struts: Constructions and a Bound, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [Cached copy]
N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, A Note on Projecting the Cubic Lattice, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, The Lifting Construction: A General Solution to the Fat Strut Problem, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [Cached copy]
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved