Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jan 03 2016 14:12:41
%S 2,5,8,10,13,16,19,21,24,27,30,32,35,38,40,43,46,49,51,54,57,60,62,65,
%T 68,71,73,76,79,81,84,87,90,92,95,98,101,103,106,109,112,114,117,120,
%U 122,125,128,131,133,136,139,142,144,147,150,153,155,158,161,163,166
%N Beatty sequence for 1 + 1/gamma.
%C Differs from A054088 at indices 56, 71, 112, 127, 142, 168, 183 etc. - _R. J. Mathar_, Oct 05 2008
%C Let r = gamma (the Euler constant, 0.5772...). When {k*r, k >= 1} is jointly ranked with the positive integers, A059555(n) is the position of n and A059556(n) is the position of n*r. - _Clark Kimberling_, Oct 21 2014
%H Harry J. Smith, <a href="/A059556/b059556.txt">Table of n, a(n) for n = 1..2000</a>
%H Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, <a href="http://dx.doi.org/10.1016/0012-365X(72)90012-X">Characterization of the set of values f(n)=[n alpha], n=1,2,...</a>, Discrete Math. 2 (1972), no.4, 335-345.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence.</a>
%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>
%t t = N[Table[k*EulerGamma, {k, 1, 200}]]; u = Union[Range[200], t]
%t Flatten[Table[Flatten[Position[u, n]], {n, 1, 100}]] (* A059556 *)
%t Flatten[Table[Flatten[Position[u, t[[n]]]], {n, 1, 100}]] (* A059555 *)
%t (* _Clark Kimberling_, Oct 21 2014 *)
%o (PARI) { default(realprecision, 100); b=1 + 1/Euler; for (n = 1, 2000, write("b059556.txt", n, " ", floor(n*b)); ) } \\ _Harry J. Smith_, Jun 28 2009
%Y Beatty complement is A059555.
%K nonn,easy
%O 1,1
%A _Mitch Harris_, Jan 22 2001