login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Transform of A059502 applied to sequence 5,6,7,...
2

%I #22 Sep 10 2017 19:18:57

%S 5,11,29,79,216,590,1609,4381,11911,32339,87690,237496,642509,1736399,

%T 4688081,12645655,34080924,91775426,246948241,663999649,1784138875,

%U 4790751131,12856028814,34478744044,92416515221

%N Transform of A059502 applied to sequence 5,6,7,...

%C The fifth row of the array A059503.

%H G. C. Greubel, <a href="/A059508/b059508.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-11,6,-1).

%F From _Colin Barker_, Nov 30 2012: (Start)

%F a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).

%F G.f.: x*(1-x)*(4*x^2-14*x+5)/(x^2-3*x+1)^2. (End)

%F a(n) = ((3 - n)*Fibonacci(2*n) + (20 + 3*n)*Fibonacci(2*n - 1))/5. - _G. C. Greubel_, Sep 10 2017

%t Rest[CoefficientList[Series[x*(1-x)*(4*x^2 - 14*x + 5)/(x^2 - 3*x + 1)^2, {x, 0, 50}], x]] (* _G. C. Greubel_, Sep 10 2017 *)

%o (PARI) Vec(-x*(x-1)*(4*x^2-14*x+5)/(x^2-3*x+1)^2 + O(x^40)) \\ _Michel Marcus_, Sep 09 2017

%Y Cf. A000667, A059216, A059219, A059502, A059503.

%K easy,nonn

%O 1,1

%A _Floor van Lamoen_, Jan 19 2001