Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Oct 16 2023 10:03:09
%S 1,2,7,33,198,1453,12669,128320,1482721,19260421,277913552,4410640919,
%T 76360030701,1432144732762,28926138244883,625974400305541,
%U 14449445989893990,354384475357492593,9202837263156670345,252260867710562944224,7278710072406887897461
%N Expansion of exp(exp(x)-1)/(2-exp(x)).
%C Row sums of A227343. - _Peter Bala_, Jul 11 2013
%C The sequence gives the number of barred preferential arrangements of an n-set having one bar, where one fixed section is a free section and elements which are to go into the other section are partitioned into unordered nonempty subsets. - _Sithembele Nkonkobe_, Jul 02 2015
%H Zhanar Berikkyzy, Pamela E. Harris, Anna Pun, Catherine Yan, and Chenchen Zhao, <a href="https://arxiv.org/abs/2308.14183">Combinatorial Identities for Vacillating Tableaux</a>, arXiv:2308.14183 [math.CO], 2023. See pp. 12, 19, 29.
%H S. Nkonkobe and V. Murali, <a href="http://arxiv.org/abs/1503.06172">A study of a family of generating functions of Nelsen-Schmidt type and some identities on restricted barred preferential arrangements</a>, arXiv:1503.06172 [math.CO], 2015.
%F a(n) = Sum_{m=0..n} Sum_{i=0..n} Stirling2(n, i)*Product_{j=1..m} (i-j+1).
%F Stirling transform of A000522. - _Vladeta Jovovic_, May 10 2004
%F a(n) ~ n!*exp(1)/(2*(log(2))^(n+1)). - _Vaclav Kotesovec_, Jul 02 2015
%e exp(exp(x)-1)/(2-exp(x)) = 1 + 2*x + 7/2*x^2 + 11/2*x^3 + 33/4*x^4 + 1453/120*x^5 + 4223/240*x^6 + 1604/63*x^7 + ...
%p s := series(exp(exp(x)-1)/(2-exp(x)), x, 60): for i from 0 to 50 do printf(`%d,`,i!*coeff(s,x,i)) od:
%t CoefficientList[Series[E^(E^x-1)/(2-E^x), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jul 02 2015 *)
%Y Row sums of A059098.
%Y Cf. A001861, A000110, A005493, A049020, A227343.
%K easy,nonn
%O 0,2
%A _Vladeta Jovovic_, Jan 02 2001
%E More terms from _James A. Sellers_, Jan 03 2001