login
A058984
Number of partitions of n in which number of parts is not 2.
11
1, 1, 1, 2, 3, 5, 8, 12, 18, 26, 37, 51, 71, 95, 128, 169, 223, 289, 376, 481, 617, 782, 991, 1244, 1563, 1946, 2423, 2997, 3704, 4551, 5589, 6827, 8333, 10127, 12293, 14866, 17959, 21619, 25996, 31166, 37318, 44563, 53153, 63240, 75153
OFFSET
0,4
COMMENTS
Number of star-like trees (trees of diameter <= 4) with n edges. Picture of the 12 star-like trees of 7 edges at Bomfim's link. - Washington Bomfim, Feb 13 2011
Number of trees with n edges and at most one node of degree > 2. - Gabriel Burns, Nov 01 2016
LINKS
Arnold Knopfmacher, Robert F. Tichy, Stephan Wagner and Volker Ziegler, Graphs, Partitions and Fibonacci Numbers (See Theorem 14.)
Stephan Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.
FORMULA
a(n) = p(n) - floor(n/2), where p(n) = number of partitions of n = A000041(n).
MAPLE
seq(combinat:-numbpart(n) - floor(n/2), n=0..50); # Robert Israel, Nov 07 2016
MATHEMATICA
f[n_] := PartitionsP@ n - Floor[n/2]; Array[f, 45, 0]
PROG
(PARI) a(n) = numbpart(n) - n\2; \\ Michel Marcus, Nov 01 2016
CROSSREFS
Cf. A000041.
Sequence in context: A173564 A121946 A241823 * A084376 A098693 A122928
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 16 2001
STATUS
approved