login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is obtained by applying the map k -> prime(k) n times, starting at n.
7

%I #47 Jun 26 2021 09:19:20

%S 2,5,31,277,5381,87803,2269733,50728129,1559861749,64988430769,

%T 2428095424619,119543903707171,5519908106212193,248761474969923757

%N a(n) is obtained by applying the map k -> prime(k) n times, starting at n.

%H Piotr Miska and János T. Tóth, <a href="https://arxiv.org/abs/1908.10421">On interesting subsequences of the sequence of primes</a>, arXiv:1908.10421 [math.NT], 2019. See DiagP.

%H Błażej Żmija, <a href="https://arxiv.org/abs/1909.12139">A note on primes with prime indices</a>, arXiv:1909.12139 [math.NT], 2019.

%e a(3) is 31 because the third prime is 5, the fifth prime is 11 and for the 3rd iteration, the eleventh prime is 31.

%e To get a(4): 4 -> 7 -> 17 -> 59 -> 277.

%p a:= n-> (ithprime@@n)(n):

%p seq(a(n), n=1..8); # _Alois P. Heinz_, Jun 21 2019

%t Table[ Nest[ Prime, n, n ], {n, 1, 11} ]

%o (PARI) a(n) = my(k = n); for (j=1, n, k = prime(k);); k; \\ _Michel Marcus_, Jan 01 2017

%o (Python)

%o from sympy import prime

%o def A058009(n):

%o k = n

%o for _ in range(n):

%o k = prime(k)

%o return k # _Chai Wah Wu_, Apr 06 2021

%Y Cf. A000040, A006450, A049090, ...

%Y For composites, see A280327. - _Matthew Campbell_, Jan 01 2017

%K nonn,hard,more

%O 1,1

%A _Robert G. Wilson v_, Nov 13 2000

%E Edited by _N. J. A. Sloane_, Oct 30 2008 at the suggestion of _R. J. Mathar_

%E a(12)-a(13) from _Donovan Johnson_, Feb 17 2011

%E a(14) from _Giovanni Resta_, Sep 29 2019

%E a(13) corrected by _Daniel Suteu_, Jun 20 2021