login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058007
Freestyle perfect numbers n = Product_{i=1,..,k} f_i^e_i where 1 < f_1 < ... < f_k, e_i > 0, such that 2n = Product_{i=1,..,k} (f_i^(e_i+1)-1)/(f_i-1).
3
6, 28, 60, 84, 90, 120, 336, 496, 840, 924, 1008, 1080, 1260, 1320, 1440, 1680, 1980, 2016, 2160, 2184, 2520, 2772, 3024, 3420, 3600, 3780, 4680, 5040, 5940, 6048, 6552, 7440, 7560, 7800, 8128, 8190, 8280, 9240, 9828, 9900, 10080, 10530, 11088, 11400, 13680
OFFSET
1,1
COMMENTS
Only one odd freestyle perfect number is known: 198585576189, found by Descartes.
This sequence consists of perfect numbers A000396 and those which aren't, called spoof-perfect numbers A174292. Roughly said, a spoof-perfect number is a number that would be perfect if one or more of its composite factors were wrongly assumed to be prime, i.e., taken as a "spoof prime". - Daniel Forgues, Nov 15 2009 (slightly rephrased)
The right hand side of the second equation in the definition, 2n = ..., equals the sum of divisors sigma(n), if all of the f_i are distinct primes. If they aren't, there arise some ambiguities: See A174292 for further discussion. - M. F. Hasler, Jan 13 2013
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B1.
EXAMPLE
n = 60 = (3^1)*(4^1)*(5^1), s = 120 = [(3^2-1)*(4^2-1)*(5^2-1)]/[(3-1)*(4-1)*(5-1)]. s-n = 120-60 = n. So 60 is in the sequence.
MATHEMATICA
r[s_, n_, f_] := Catch[If[n == 1, s == 1, Block[{p, e}, Do[e = 1; While[ Mod[n, p^e] == 0, r[s*(p^(e+1) - 1)/(p-1), n/p^e, p] && Throw@True; e++], {p, Select[Divisors@n, f < # &]}]]; False]];
spoofQ[n_] := r[1/2/n, n, 1] && DivisorSigma[-1, n] != 2;
perfectQ[n_] := DivisorSigma[1, n] == 2*n;
Select[Range[10^4], spoofQ[#] || perfectQ[#]&] (* Jean-François Alcover, May 16 2017, using Giovanni Resta's code for A174292 *)
CROSSREFS
Sequence in context: A317478 A353901 A081537 * A033588 A014635 A227970
KEYWORD
nonn,nice
AUTHOR
Naohiro Nomoto, Nov 13 2000
EXTENSIONS
a(41)-a(45) from Amiram Eldar, Dec 27 2018
STATUS
approved