login
Positive integers that are not the sum of exactly five positive cubes.
4

%I #18 Apr 18 2024 12:51:30

%S 1,2,3,4,6,7,8,9,10,11,13,14,15,16,17,18,20,21,22,23,24,25,27,28,29,

%T 30,32,34,35,36,37,39,41,42,43,44,46,47,48,49,50,51,53,54,55,56,58,60,

%U 61,62,63,65,66,67,69,70,72,73,74,76,77,79,80,81,84,85,86,87,88,91,92

%N Positive integers that are not the sum of exactly five positive cubes.

%C It appears that this sequence has 5439 terms, the last of which is 1290740. - _T. D. Noe_, Dec 13 2006

%H T. D. Noe, <a href="/A057906/b057906.txt">Table of n, a(n) for n=1..5439</a>

%H Brennan Benfield and Oliver Lippard, <a href="https://arxiv.org/abs/2404.08193">Integers that are not the sum of positive powers</a>, arXiv:2404.08193 [math.NT], 2024. p. 5.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a>.

%t max = 100; Complement[Range[max], Select[Range[max], Count[ PowersRepresentations[#, 5, 3], r_ /; FreeQ[r, 0]] == 1 &]] (* _Jean-François Alcover_, Oct 23 2012 *)

%Y Cf. A048926 (numbers that are the sum of five positive cubes in exactly 1 way)

%Y Cf. A003328 (Complement)

%K nonn,fini

%O 1,2

%A _Eric W. Weisstein_